Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Insects ; 14(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37233068

ABSTRACT

The beetles of the subtribe Oedionychina (Chrysomelidae, Alticinae) are the only ones that have the atypical giant and achiasmatic sex chromosomes, which are substantially larger than the autosomes. Previous cytogenetic analyses suggest a large accumulation of repetitive DNA in the sex chromosomes. In this study, we examined the similarity of X and Y chromosomes in four Omophoita species and compared genomic differentiation to better understand the evolutionary process and the giant sex chromosomes origin. Intraspecific genomic comparation using male and female genomes of O. octoguttata and interespecific analyses using genomic DNA of O. octoguttata, O. sexnotata, O. magniguttis, and O. personata were performed. In addition, whole chromosome painting (WCP) experiments were performed with X and Y chromosome probes of O. octogutatta. CGH analysis revealed great genomic similarity between the sexes and a sex-specific region on the Y chromosome, and interspecific analysis revealed a genomic divergence between species. In contrast, WCP results revealed that the sex chromosomes of O. octoguttata have high intra- and interspecific similarity with the studied species. Our data support a common origin under the canonical evolution of the sex chromosomes in this group, as they have high genomic similarity between them.

2.
Animals (Basel) ; 13(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37106978

ABSTRACT

The representatives of cyprinid lineage 'Poropuntiinae' with 16 recognized genera and around 100 species form a significant part of Southeast Asian ichthyofauna. Cytogenetics are valuable when studying fish evolution, especially the dynamics of repetitive DNAs, such as ribosomal DNAs (5S and 18S) and microsatellites, that can vary between species. Here, karyotypes of seven 'poropuntiin' species, namely Cosmochilus harmandi, Cyclocheilichthys apogon, Hypsibarbus malcomi, H. wetmorei, Mystacoleucus chilopterus, M. ectypus, and Puntioplties proctozysron occurring in Thailand were examined using conventional and molecular cytogenetic protocols. Variable numbers of uni- and bi-armed chromosomes indicated widespread chromosome rearrangements with a stable diploid chromosome number (2n) of 50. Examination with fluorescence in situ hybridization using major and minor ribosomal probes showed that Cosmochilus harmandi, Cyclocheilichthys apogon, and Puntioplites proctozystron all had one chromosomal pair with 5S rDNA sites. However, more than two sites were found in Hypsibarbus malcolmi, H. wetmorei, Mystacoleucus chilopterus, and M. ectypus. The number of chromosomes with 18S rDNA sites varied amongst their karyotypes from one to three; additionally, comparative genomic hybridization and microsatellite patterns varied among species. Our results reinforce the trend of chromosomal evolution in cyprinifom fishes, with major chromosomal rearrangements, while conserving their 2n.

3.
Front Genet ; 13: 869073, 2022.
Article in English | MEDLINE | ID: mdl-35601496

ABSTRACT

Allopatry is generally considered to be one of the main contributors to the remarkable Neotropical biodiversity. However, the role of chromosomal rearrangements including neo-sex chromosomes for genetic diversity is still poorly investigated and understood. Here, we assess the genetic divergence in five Pyrrhulina species using population genomics and combined the results with previously obtained cytogenetic data, highlighting that molecular genetic diversity is consistent with their chromosomal features. The results of a principal coordinate analysis (PCoA) indicated a clear difference among all species while showing a closer relationship of the ones located in the same geographical region. This was also observed in genetic structure analyses that only grouped P. australis and P. marilynae, which were also recovered as sister species in a species tree analysis. We observed a contradictory result for the relationships among the three species from the Amazon basin, as the phylogenetic tree suggested P. obermulleri and P. semifasciata as sister species, while the PCoA showed a high genetic difference between P. semifasciata and all other species. These results suggest a potential role of sex-related chromosomal rearrangements as reproductive barriers between these species.

4.
Biology (Basel) ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35205181

ABSTRACT

Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.

5.
Biology (Basel) ; 10(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34571799

ABSTRACT

A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.

6.
Genes (Basel) ; 11(10)2020 10 10.
Article in English | MEDLINE | ID: mdl-33050411

ABSTRACT

The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.


Subject(s)
Catfishes/genetics , Evolution, Molecular , Genetic Variation , Genome , Sex Chromosomes/genetics , Animals , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Genomics , Karyotyping
7.
Genes (Basel) ; 11(4)2020 03 28.
Article in English | MEDLINE | ID: mdl-32231057

ABSTRACT

Lebiasinidae fishes have been historically neglected by cytogenetical studies. Here we present a genomic comparison in eleven Lebiasinidae species, in addition to a review of the ribosomal DNA sequences distribution in this family. With that, we develop ten sets of experiments in order to hybridize the genomic DNA of representative species from the genus Copeina, Copella, Nannostomus, and Pyrrhulina in metaphase plates of Lebiasina melanoguttata. Two major pathways on the chromosomal evolution of these species can be recognized: (i) conservation of 2n = 36 bi-armed chromosomes in Lebiasininae, as a basal condition, and (ii) high numeric and structural chromosomal rearrangements in Pyrrhulininae, with a notable tendency towards acrocentrization. The ribosomal DNA (rDNA) distribution also revealed a marked differentiation during the chromosomal evolution of Lebiasinidae, since both single and multiple sites, in addition to a wide range of chromosomal locations can be found. With some few exceptions, the terminal position of 18S rDNA appears as a common feature in Lebiasinidae-analyzed species. Altogether with Ctenoluciidae, this pattern can be considered a symplesiomorphism for both families. In addition to the specific repetitive DNA content that characterizes the genome of each particular species, Lebiasina also keeps inter-specific repetitive sequences, thus reinforcing its proposed basal condition in Lebiasinidae.


Subject(s)
Characiformes/genetics , Chromosomes/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Genome , Animals , Fish Proteins/genetics , Repetitive Sequences, Nucleic Acid
8.
Neotrop. ichthyol ; 18(4): e200055, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135408

ABSTRACT

The South American giant fishes of the genus Arapaima, commonly known as pirarucu, are one of the most iconic among Osteoglossiformes. Previously cytogenetic studies have identified their karyotype characteristics; however, characterization of cytotaxonomic differentiation across their distribution range remains unknown. In this study, we compared chromosomal characteristics using conventional and molecular cytogenetic protocols in pirarucu populations from the Amazon and Tocantins-Araguaia river basins to verify if there is differentiation among representatives of this genus. Our data revealed that individuals from all populations present the same diploid chromosome number 2n=56 and karyotype composed of 14 pairs of meta- to submetacentric and 14 pairs of subtelo- to acrocentric chromosomes. The minor and major rDNA sites are in separate chromosomal pairs, in which major rDNA sites corresponds to large heterochromatic blocks. Comparative genomic hybridizations (CGH) showed that the genome of these populations shared a great portion of repetitive elements, due to a lack of substantial specific signals. Our comparative cytogenetic data analysis of pirarucu suggested that, although significant genetic differences occur among populations, their general karyotype patterns remain conserved.(AU)


Os peixes gigantes da América do Sul do gêneroArapaima, comumente conhecidos como pirarucus, são um dos mais icônicos de Osteoglossiformes. Estudos citogenéticos prévios identificaram suas características cariotípicas, entretanto a caracterização da diferenciação citotaxonômica através de suas distribuições geográficas ainda são desconhecidas. Nesse estudo, nós comparamos características cromossômicas utilizando técnicas de citogenética clássica e molecular em populações das bacias dos rios Amazonas e Tocantins-Araguaia, a fim de verificar se há alguma diferenciação entre representantes desse gênero. Nossos dados revelaram que indivíduos de todas as populações apresentam número diploide de 2n=56 cromossomos e que seus cariótipos são compostos de 14 pares de cromossomos meta- e submetacêntricos e 14 pares de subtelo- e acrocêntricos. Os sítios maiores e menores de rDNA estão localizados em pares cromossômicos separados, onde os sítios maiores de rDNA correspondem a grandes blocos heterocromáticos. Hibridizações genômicas comparativas (CGH) mostraram que o genoma dos espécimes dessas populações é amplamente compartilhado, devido à falta de sinais substanciais específicos. Nossos dados de citogenética comparativa do pirarucu sugerem que embora diferenças genéticas significativas ocorram entre populações, os padrões cariotípicos gerais se mantêm conservados.(AU)


Subject(s)
Animals , DNA, Ribosomal , Cytogenetics , Karyotype , Fishes/genetics , Surveys and Questionnaires , Amazonian Ecosystem , Rivers , Data Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...